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Abstract— The paper considers the regulation problem of
linear time invariant systems with unmatched perturbations.
The proposed methodology exploits a high order sliding mode
observer, which guarantees theoretically exact state and per-
turbation estimation. It is introduced a controller with a
compensation strategy based on the identified perturbation
values. When the system satisfies quite restrictive assumptions,
the method ensures exact regulation of the unmatched states.
In order to deal with the general case it is proposed a nested
backward strategy to design the sliding surface, which allows to
compensate the unmatched uncertainties and to stabilize some
of the non-actuated state components, while all the remaining
states are maintained bounded.

I. INTRODUCTION

Motivation. Control under heavy uncertainties is one of
the main problems of modern control theory. One of the
most prospering control strategies insensitive w.r.t. uncer-
tainties is sliding mode control (SMC) (see, e.g., [2]). This
robust technique is well known for its ability to withstand
external disturbances and model uncertainties which satisfy
the matching condition. This condition is met when the
perturbation or parameters variations are implicit at the input
channels, for example in the case of completely actuated
systems.

The SMC design methodology involves two stages: the
design of a switching function which provides desirable
system performance in the sliding mode and the design of
the control law ensuring that the system states are driven
to the sliding manifold and thus the desired performance is
attained and maintained in spite of the matched uncertainties.
Nevertheless, there are some disadvantages: the necessity
to measure the whole state and the lack of robustness against
unmatched uncertainties of the resulting controller.

In order to address the issue of robustness against un-
matched perturbations, the main solution has been the combi-
nation of sliding mode technique with other robust strategies.
In order to reduce the effects of unmatched uncertainties,
a method that combines H∞ and integral sliding mode
control is proposed in [5]. The main idea is to choose
such a projection matrix, ensuring not only that unmatched
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perturbations are not amplified, but even more, that its effects
are minimized. In [9] the linear time-varying system with
unmatched disturbances is replaced by a finite set of dynamic
models such that each one describes a particular uncertain
case then, applying a min-max SMC they develop an optimal
robust sliding-surface design. A control scheme based on
block control and quasi-continuous HOSM techniques is
proposed in [10] for control of nonlinear systems with
unmatched perturbations; this method assures exact finite
time tracking.

The sliding surface design for systems with unmatched
uncertainties considering only output information has been
considered in [24], [14], [25]. In [14] a linear matrix inequal-
ities (LMI) based method for designing an output feedback
variable structure control system is presented. The author
proposes an LMI based sliding surface design considering H2
performance. Another possible solution to overcome the full
state requirement is to use an observer to estimate the state.
In [24] an output robust stabilization problem for a class of
systems with matched and mismatched uncertainties using
sliding mode techniques is considered. The idea is to use
an asymptotic nonlinear observer to estimate system states,
then a variable structure controller is proposed to stabilize
the system. In [25] a integral sliding surface is designed,
once the system is steered to the sliding surface a full
order compensator is designed for the unmatched disturbance
attenuation.

Contribution. In this paper a robust output control law is
designed to reject the unmatched uncertainties and stabilize
the underactuated dynamics using a high order sliding mode
observer to reconstruct the states and perturbations in finite
time.

The proposed control law exactly compensates (theoreti-
cally) the unmatched perturbation, stabilizing the underactu-
ated states while ensuring the boundedness of the remained
states. In order to achieve this:
• A sliding manifold is designed such that the system’s

motion along the manifold meets the specified perfor-
mance: the regulation of the non-actuated states and the
rejection of unmatched uncertainties.

• A nested backward strategy to design the sliding surface
is proposed to compensate the unknown unmatched
inputs stabilizing some of the non-actuate states.

• A sliding mode control law is designed such that the
system’s state is driven towards the manifold and stays
there for all future time, regardless of disturbances and
uncertainties.

Paper Structure. In Section II the problem formulation and
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control challenge are presented. The high order sliding mode
observer algorithm is described in Section III as well as the
procedure to identify the perturbations and its derivatives.The
compensation of the unmatched perturbations through the
sliding surface is outlined in Section IV. Section V presents a
backward nested compensation strategy. A simulation exam-
ple illustrates the performance of the robust exact unmatched
uncertainties compensation controller in Section VI.

II. PROBLEM STATEMENT

Let us consider a linear time invariant system with un-
known inputs

ẋ(t) = Ax(t)+Bu(t)+Dw(t) , (1)
y(t) = Cx(t) (2)

where x(t) ∈ℜn, u(t) ∈ℜm, and y(t) ∈ℜp (1≤ p < n) are
the state vector, the control and the output of the system,
respectively. The vector z(t) ∈ ℜm represents unmatched
states which we wan to stabilize. The unknown inputs are
represented by the vector w(t) ∈ ℜq, and rankC = p and
rankB = m.

The following assumptions are assumed to hold about the
system:
A1. The (A,B) pair is assumed to be controllable.
A2. For u = 0, the system is strongly observable, or equiv-

alently (A,C,D) has no invariant zeros.
A3. w(t) has successive derivatives up to order α bounded

by the same constant w+, i.e.
∥∥∥w(α+1) (t)

∥∥∥ ≤ w+ for
all t ≥ 0.

Here ‖·‖ is understood as the vector Euclidean norm.

A. LTISUI in regular form

Let us transform the system into a suitable regular form,
[18], such that the system is decomposed into two connected
subsystems. By assumption rank(B) = m, there exists an
invertible matrix of elementary row operations T ∈ℜm×n

T =
[

B⊥

B+

]
, B⊥B = 0, B+ =

(
BT B

)−1
BT (3)

such that
T B =

[
0
Im

]
(4)

where Im ∈ ℜm×m. Applying the coordinate transformation
T x =

[
xT

1 ηT
1
]T to system (2) yields

ẋ1 (t) = A1x1 (t)+B1η1 (t)+D1w(t) (5)
η̇1 (t) = E1x1 (t)+F1η1 (t)+H1w(t)+u(t) (6)

where x1 ∈ℜn−m, η1 ∈ℜm, D1 ∈ℜ(n−m)×q, H1 ∈ℜm×q.
The control aim is to design a controller, which allows

to regulate the perturbed non-actuated subsystem (5) and
which is based on the measurement of the state and the
identification of the unmatched perturbation.

A first solution is proposed, then it is considered the
case when the condition D1 ∈ span(B1) does not hold. In
this more general situation the design of the compensator

exploits a nested backward strategy, implemented via a
suitably chosen sliding surface, which allows to compensate
the unmatched effects of the unknown inputs and to stabilize
some of the non-actuated state components, while all the
remaining states are maintained bounded.

The unmatched inputs compensator relies on the availabil-
ity, in a finite time, of an exact estimation of the state and
the identification the unknown inputs and its derivatives.

To this end we introduce a high order sliding mode ob-
server (HOSMO), [8]. The HOSMO provides the exact value
of the state vector and the unknown inputs identification in
a finite time, thereby achieving the best possible observer
precision [4].

III. HIGH ORDER SLIDING MODE OBSERVER (HOSMO)
The HOSMO provides the exact value of the state vector

and the unknown inputs identification in a finite time. Basi-
cally, the observer works in two stages: first, a linear observer
is used to maintain bounded the estimation error between a
linear observer and the original state; then, by means of a
differentiation scheme, the state vector and unknown inputs
identification vector are found. Below a general description
of the observer is given.
Stage 1: Let us design a linear observer in order to bound
the observation error,

˙̃x(t) = Ax̃(t)+Bu(t)+L(y(t)− ỹ(t)) ,
ỹ(t) = Cx̃

where L must be designed such that the matrix Ã := (A−LC)
is Hurwitz. Defining e(t) := x(t)− x̃(t)

ė(t) = Ãe(t)+Dw(t) (7)

Thus, e(t) has a bounded norm, i.e., there exist a known
constant e+ and a finite time te, such that

‖e(t)‖ ≤ e+, for all t > te (8)

Stage 2: In order to reconstruct the state, we rely on an
algorithm, which allows to decouple the unknown inputs
from the successive derivatives of the output of the linear
estimation error system, ye := y − ỹ. The steps are the
following.

0. Define M1 := C.
1. Differentiate a linear combination of the output ye =

y− ỹ, ensuring that the derivative of this combination
is unaffected by the uncertainties, i.e.,

d
dt

(M1D)⊥ ye (t) = (M1D)⊥CÃe(t)

Construct the extended vector[
d
dt (M1D)⊥ ye (t)

ye (t)

]
=
[

(M1D)⊥CÃ
C

]
︸ ︷︷ ︸

M2

e(t)

J1 = (M1D)⊥ and Ip ∈ℜp

M2e(t) =
d
dt

[
J1 0
0 Ip

][
ye (t)∫

ye (τ)dτ

]
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There is a k ≤ n such that rank (Mk) = n, [21].
j. Differentiate a linear combination of the entries of the

vector Mk−1e(t) that are unaffected by the uncertainties[
d
dt

(
M j−1D

)⊥M j−1e(t)
ye (t)

]
=
[ (

M j−1D
)⊥M j−1Ã
C

]
︸ ︷︷ ︸

M j

e(t)

M je(t) =
d j−1

dt j−1

[
J j−1 0

0 Ip

]
Y

[ j−1]
(9)

where J j−1 =
(
M j−1D

)⊥ [ J j−2 0
0 Ip

]
and

Y [ j−1] =


ye (t)∫ t

0 ye (τ)dτ

...∫ t
0 · · ·

∫ τ j−1
0 ye

(
τ j−1

)
dτ j−1 · · ·dτ2dτ1

 .

Under A2 there exists a matrix Mk (k ≤ n), generated
recursively by (9), that satisfies the condition rank Mk = n
(see, e.g., [21]). This means that the algebraic equation

Mke(t) =
dk−1

dtk−1

[
Jk−1 0

0 Ip

]
Y

[k−1]

has a unique solution for e(t). Such solution could be
found by means of the pre-multiplication of both sides of
the previous equation by M+

k :=
(
MT

k Mk
)−1 MT

k . That is

e(t) =
dk−1

dtk−1 M+
k

[
Jk−1 0

0 Ip

]
Y

[k−1]

︸ ︷︷ ︸
Θ(t)

(10)

The Assumption A3 allows realizing an (α + k− 1)− th
order sliding mode differentiator, which is the highest order
we can construct for this case. The HOSM differentiator is
given by

ν̇0 = λ 0Λ
1

i+1 |ν0−Θ(t)|
i

i+1 sign(ν0−Θ(t))+ν1

ν̇1 = λ 1Λ
1
i |ν1− ν̇0|

i−1
i−2 sign(ν1− ν̇0)+ν2

... (11)

ν̇ i−1 = λ i−1Λ
1
2 |ν i−1− ν̇ i−2|

1
2 sign(ν i−1− ν̇ i−2)+ν i

ν̇ i = λ iΛsign(ν i− ν̇ i−1)

The observer order is i = α + k− 1, the values of the
λ i can be calculated as is shown in [20], Λ is a Lipschitz
constant of Θ(α+k) (t), which for our case can be calculated
in the following way: starting from the fact that νk−1 = e(t)
remains bounded by (8), the next derivative νk = ė(t) ,
will be also bounded ‖ė(t)‖ ≤ ‖A−LC‖e+ + ‖B‖w+. In
general eα (t) can be represented as a linear combination of{

ek, ek+1, ..., eα−1, ẇ, ..., wα
}

and it can be verified that

Λ≥ ‖A−LC‖α e+ +
α−1

∑
j=0
‖A−LC‖ j ‖B‖w+ (12)

A. State variables observation

In [20] it was shown that with the proper choice of the
constants λ i, there is a finite time tσ such that the identity
ν j (t) = d j

dt j Θ(t) is achieved for every j = 0, ...,α + k− 1.
The vector e(t) can be reconstructed from the (k−1)−
th order sliding dynamics. Thus, we achieve the identity
νk−1 (t) = e(t) , and consequently

x̂(t) := νk−1 (t)+ x̃(t) for all t ≥ tσ

where x̂ represents the estimated value of x. Therefore, the
identity x̂(t)≡ x(t) , for all t ≥ tσ is achieved.

B. Uncertainties Identification

Now, considering the system error dynamics (7). We can
recover ė(t) from the HOSM differentiator (11) in finite time,
the equality νk (t) = ė(t) is achieved for all t ≥ tσ and the
next equation holds

ŵ(t) =−B+
[
(A−LC)ν

k−1 (t)−ν
k (t)

]
(13)

The next derivatives can be obtained following a similar

procedure,
·
ŵ = −B+ [(A−LC)νk (t)−νk+1 (t)

]
, under As-

sumption A3 it could be identified the successive
·
ŵ, ..., ŵα

derivatives.

C. Precision of the observation and identification processes

Suppose that we would like to realize the HOSM observer
with a sampling step δ . Then, as follows from Theorem 7 of
[20] , the error caused by the sampling time δ in the absence
of noise for an (α + k−1)− th order HOSM differentiator,
is ∥∥∥Θ

( j) (t)−ν j (t)
∥∥∥≤ O(δ α+k− j) for j = 0, ...,α + k−1

(14)
For recovering the estimated state, (k−1) differentiations

are needed. From expression (14) follows that the observa-
tion error provoked by the sampling time δ is O(δ α+1).

Now, equation (13 shows that k differentiations are needed
in order to recover the estimated unknown input ŵ. There-
fore, from (14) the sampling step identification error will
be O(δ α) and, for the succesive unkonwn inputs derivatives

identification, i.e.
·
ŵ,
··
ŵ, . . . , ŵ(α) the error will be, respec-

tively, O(δ α−1),O(δ α−2), ...,O(δ ).

IV. COMPENSATOR OF THE UNMATCHED
EFFECTS OF THE UNKNOWN INPUTS

Let us introduce the following sliding output

s(t) = Kx1 (t)+η1 (t)+g(ŵ) , (15)

where s ∈ ℜm, the matrix K ∈ ℜm×(n−m) will be suitably
chosen such that, on the sliding manifold s = 0, the behavior
of the reduced-order system is the desired one. The term
g(ŵ) is added to compensate unmatched uncertainties and it
will be specified in the sequel.
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The following control law is applied to enforce the sliding
motion on s = 0

u(t) =−ρ (x)
s(t)
‖s(t)‖

, (16)

where ρ (x) > ‖Φ‖‖x‖+φ +ζ , Φ := [KA1 +E1 KB1 +F1],
φ := ‖KD1 +H1‖w+ +‖Γ‖w+, ζ > 0, [7]. Γ will be speci-
fied later.

On the sliding surface s = 0, it holds

η1 = −Kx1−g(ŵ) , (17)
ẋ1 = (A1−B1K)x1−B1g(ŵ)+D1w. (18)

Since the pair (A,B) is controllable (Assumption A1), it is
well known, [15], that also the pair (A1,B1) is controllable.
Then it is possible to design a matrix K1 such that matrix
As , (A1−B1K1) has stable eigenvalues.

The compensator term g(ŵ) should be designed in order
to compensate the unmatched uncertainties.

A. Compensation of all the unmatched effects of the unknown
inputs

Let us consider the case when

D1 ∈ span(B1) . (19)

Then, there exists a matrix Γ ∈ℜm×p such that

B1Γ1 = D1. (20)

In (18) the unmatched effects of the unknown inputs D1w
result to be matched with respect to the state vector η1.

The compensator term is designed as

g(ŵ) = Γ1ŵ. (21)

Substituting (21) in equation (18) yields

ẋ1 (t) = (A1−B1K)x1 (t)+D1 (w− ŵ) . (22)

In the ideal case of a exact identification of the unknown
inputs, when ŵ = w, we obtain

ẋ1 (t) = Asx1 (t) . (23)

Since the eigenvalues of As have negative real part, equation
(23) is exponentially stable. The unmatched uncertainties are
compensated and x1 is stabilized. The trajectories of the state
x1 will converge to a bounded region, i.e. there exist some
constants a1, a2 > 0 such that

‖x1(t)‖ ≤ a1 ‖x1(0)‖exp−a2t , ∀t > tσ .

Furthermore, η1 is bounded as well indeed during sliding
motion. Taking the norm of equation (17) we have

‖η1 (t)‖ ≤ ‖K‖‖x1 (t)‖+‖Γ‖w+, ∀t > tσ . (24)

In particular, when rank(B1) = n−m, matrix Γ = B+
1 D1,

where B+
1 is understood as the right inverse of B1, that is

B+
1 = BT

1
(
B1BT

1
)−1.

V. NESTED BACKWARD COMPENSATOR OF THE
UNMATCHED EFFECTS OF THE UNKNOWN

INPUTS
In order to deal with more general systems, since assump-

tion (19) is quite restrictive, we consider the case when

D1 /∈ span(B1) . (25)

Let us transform the subsystem (5) into two connected sub-
systems. Assuming rank(B1) = m, there exist an invertible
transformation T1 ∈ℜ(n−2m)×(n−m) such that

T1B1 =
[

0
Im

]
Applying the coordinate transformation T1x1 =

[
xT

2 ηT
2
]T

to subsystem (5), we have

ẋ2 (t) = A2x2 (t)+B2η2 (t)+D2w(t) (26)
η̇2 (t) = E2x2 (t)+F2η2 (t)+H2w(t)+η1 (t) (27)

where x2 ∈ ℜn−2m and η2 ∈ ℜm . The pair (A2,B2) is
controllable (Assumption A1).

If D2 ∈ span(B2) there exists a matrix Γ2 such that B2Γ2 =
D2.

The aim is to design a feedback control to stabilize
subsystem (26). To this end η2 can be exploited and regarded
as an input.

Let us define ξ 2 = η2 +K2x2 +Γ2ŵ, then in the ideal case
when ŵ = w and D2 (w− ŵ) = 0, from (26) and (27)

ẋ2 = A2sx2 +B2ξ 2 (28)
ξ̇ 2 = E2x2 +F2ξ 2 +H2w+Γ2 ˙̂w+η1

where A2s = A2−B2K2, E2 = E2−F2K2−K2A2s, F2 = F2 +
K2B2.

Now, let us design a control η1 to stabilize the auxiliary
system (28).

A. Stabilization of x2

Let us consider as Lyapunov function candidate V =
xT

2 Px2 + ξ
T
2 Rξ 2, were P and R are two symmetric positive

definite matrices satisfying PA2s + AT
2sP = −I and RF2 +

FT
2 R = −I. It can be verified that for η2 = −R−1BT

2 Px2−
η−H2ŵ−Γ2 ˙̂w, the derivative of Lyapunov function yields
to V̇ ≤ −‖x2‖2−‖ξ 2‖

2. In the ideal case, x2, ξ 2 will be
exponentially stable.

Since ξ 2 = 0, the next holds

η2 = −K2x2−Γ2ŵ

ẋ2 = (A2−B2K2)x2

Matrix (A2−B2K2) is designed Hurwitz. Finally, the co-
ordinate x2 is exponentially stable, i.e. there exist constants
a3, a4 > 0 such that

‖x2(t)‖ ≤ a3 ‖x2(0)‖exp−a4t ∀t > tσ

The remaining trajectories will be bounded ∀t > tσ

‖η2(t)‖ ≤ ‖K1x2(t)‖+‖Γ2‖w+

‖η1(t)‖ ≤ ‖ϕx1‖+‖Γ2 +H2‖w+
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From the above analysis, the sliding surface will be

s =
(
R−1BT

2 P+K2
)

x2 + η2 +η1 +(H2 +Γ2) ŵ+Γ2
·
ŵ

= ϕx1 +η1 +(H2 +Γ2) ŵ+Γ2 ˙̂w

where ϕ =
[ (

R−1BT
2 P+K2

)
I
]

T−1
1 . The sliding mode

dynamics yields

ṡ = Φx+(H2 +Γ2) ẇ+Γ2 ¨̂w+u

where Φ =
[

ϕA1 +A3 ϕA2 +A4
]

T−1. Choosing V = srs
2

and differentiating, it can be verified that

V̇ (s) ≤ −‖s‖(ρ (x)−‖Φ‖‖x‖−φ)
ρ (x) > ‖Φ‖‖x‖+φ +ζ

where ζ > 0 y φ := ‖H2 +2Γ2‖w+.
The previous procedure can be iterated since, for some `,

x` can be stabilized, i.e. until the condition D` ∈ span(B`)
is satisfied. If rank

(
B(`−1)

)
= m, there exists a nonsingular

transformation T(`−1) ∈ℜ(n−`m)×(n−(`−1)m) such that

T(`−1)B(`−1) =
[

0
Im

]
.

Applying the coordinate transformation T(`−1)x(`−1) =[
xT
` ηT

`

]T yields to

ẋ` (t) = A`x` (t)+B`η` (t)+D`w(t)
η̇` (t) = E`x` (t)+ F̀ η` (t)+H`w(t)+η(`−1) (t)

If D` ∈ span(B`) there is a matrix Γ` such that B`Γ` = D`.
The vector x` will be stabilized by designing η(`−1) as a

linear combination of
{

x, ŵ, ..., ŵ(`)
}

.

VI. EXAMPLE

Consider the system

ẋ =

 0 1 0
0 0 1
0 0 0

x+

 0
0
1

u+

 1
0
0

w

y =
[

1 0 0
0 1 0

]
where the unknown input w(t) = sin2t + 0.5 is a smooth
signal.

Observer Design. It could be verified that the triplet
(A,D,C) is strongly observable. The observer parameters are
k = 2, M1 = C,

M2 =

 0.2072 −12 1
1 0 0
0 1 0

 , J2 =
[

0 1 0
0 0 1

]
.

A 3th order HOSM differentiator is designed to re-

cover
{

x, ŵ,
·
ŵ
}

. The gains of the differentiator are Λ =

1500,
[

λ 0 λ 1 λ 2 λ 3
]

=
[

5 3 1.5 1.1
]
. Here,

we point out that a 2th order HOSM would be enough

Fig. 1. Left column shows the system states without compensation D1 /∈
spanB1. Right column shows the stabilization of the state x2 when a nested
backward strategy is applied.

to recover the variables
{

x, ŵ,
·
ŵ
}

, nevertheless increasing

the order of the HOSM will increase the accuracy of the
estimated state and the identified variables [7].

Control Design. Transforming to regular form T x =[
x1 η1

]T
.

A1 =
[

0 1
0 0

]
B1 =

[
0
1

]
D1 =

[
1
0

]
The system do not satisfy D1 ∈ span{B1}. For the subsystem
x1 =

[
x2 η2

]T
ẋ2 = η2 +w

η̇2 = η1

Using η2 as the control, with ξ 2 = η2 + ŵ+2x2

ẋ2 = −2x2 +ξ 2

ξ̇ 2 = −x2 +ξ 2 +
·
ŵ+η2

taking V = x2
2+ξ

2
2

2 , with ξ 2 =−4ξ 2−x2−
·
ŵ, V̇ < 0 can be

guaranteed. The sliding surface

s = 5x2 +4η2 +η1 +4ŵ+
·
ŵ

VII. CONCLUSIONS

The paper considers the regulation problem of linear time
invariant systems with unmatched perturbations.

The proposed methodology exploits a high order sliding
mode observer, which guarantees theoretically exact state and
perturbation estimation. Based on the exact reconstruction of
the unknown inputs, the unmatched uncertainties can be com-
pensated through a sliding mode control. The compensation
strategy of the proposed controller relies on the identified
perturbation values.

The performed analysis shows that the possibility to
compensate the total non-actuated states through the sliding
surface depends on the system structure. When the system
satisfies quite restrictive assumptions, the method ensures
exact regulation of the unmatched states.

In order to deal with more general case it is proposed a
nested backward strategy to design the sliding surface, which
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allows to compensate the unmatched uncertainties and to
stabilize some of the non-actuated state components, while
all the remaining states are maintained bounded.
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